If it's not what You are looking for type in the equation solver your own equation and let us solve it.
205=35x^2
We move all terms to the left:
205-(35x^2)=0
a = -35; b = 0; c = +205;
Δ = b2-4ac
Δ = 02-4·(-35)·205
Δ = 28700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28700}=\sqrt{100*287}=\sqrt{100}*\sqrt{287}=10\sqrt{287}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{287}}{2*-35}=\frac{0-10\sqrt{287}}{-70} =-\frac{10\sqrt{287}}{-70} =-\frac{\sqrt{287}}{-7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{287}}{2*-35}=\frac{0+10\sqrt{287}}{-70} =\frac{10\sqrt{287}}{-70} =\frac{\sqrt{287}}{-7} $
| -2a+26=20 | | 2a+26=20 | | 3^x+1+9^x=108 | | 1/2=5/8w. | | 3(1-2x)+10=2(3x+1) | | F{x}=4x+7 | | 11-2n=-5 | | 4(x+7)-4x=-2x+18 | | x/5/6=2/7 | | P(x)=-8x^2 | | 0=0x(x^2) | | -6|w+4|=0 | | x=7.8x | | -2|5x|=50 | | 2x+15=15-9 | | 1.8x=40.1 | | 65+x+30=180 | | x^2+11=98 | | (-5m)+(-m)+12m= | | 7(5x)+82×=826 | | 3x–12+x=24 | | 0.8(6n+6)=0.6(4n+12) | | y=62(500)-0.05(500^2) | | 1.25(2x-20)=7.5 | | −2x +4=8 | | 360=280+(11x+45)/ | | 17-7=m(21-2) | | 360=140+(11x+45) | | 49+106(3x+10)=180 | | a=1/2=3/5 | | 7v/5=-21 | | 140+y+25=140+40 |